
8 The Delphi Magazine Issue 66

SQL Components
A framework for building search forms
against relational databases
by Nando Dessena

Those among us who work on
database applications with a

client/server architecture have
undoubtedly had the chance to
notice one fact: the standard
Delphi VCL, which offers many
facilities to handle local databases,
does not give us the best possible
performance when working with
SQL database servers. It doesn’t
take an expert to notice that
searching and filtering techniques
which are best suited for Paradox
tables (such as Locate, SetRange
and Filter) will not behave as
smoothly when they are converted
into the only language that an
RDBMS understands: SQL.

So, the idea upon which this arti-
cle is based is to create some com-
ponents for searching and filtering
data that are specifically designed
for the SQL language. Furthermore,
I’m going to discuss a possible
framework that will make extend-
ing the components and creating
new ones a simpler task. What I’m
going to describe is nothing more
than a start, and will need various
enhancements and refinements
before it can be used to cover all
the needs of a real-world applica-
tion. Nevertheless, I hope the
concepts and techniques will
prove useful and interesting.

Balancing The Workload
We know that, in a client/server
environment, it is best to arrange
things so that the server does
most of the work. Having the client

perform lookups, table joins and,
most of all, filtering and sorting the
data, is a recipe for disaster. The
only circumstance in which it is
acceptable to perform this kind of
processing client-side is when the
data is already there for some
other reason, for example with the
so-called ‘briefcase model’. Fetch-
ing all the data from the server just
to filter or sort it, you will agree,
will make us high users of network
bandwidth and cause delays for
our users. So, the best way to do
these things is through the SQL
language.

Although a large portion of the
Delphi VCL is dedicated to data-
bases, it doesn’t help us very
much: we can see that Lookups,
Ranges and Filters are not suited to
a client/server architecture. Since
the database VCL was born when
the BDE was still in common use, it
shares its flattening philosophy,
which says all databases should be
treated almost the same way. Com-
promises rarely represent the best
option for anyone, in this case
those of us who do client/server
development. As a consequence, I
am going to introduce some simple
examples of how you can leverage
the power of SQL without giving up
on a hierarchy of reusable classes.
An SQL statement is surely the best
way to query a relational database,
but it is not mandatory to write this
statement by hand each time!

Filtering Components
To build our family of components
(each of which will be named after
its base class plus an SQL prefix,
adding also an extra DM just to be
sure we avoid any clashes), let’s
start from a TQuery descendant
(TDMSQLQuery) which will be capa-
ble of modifying its where clause
upon request. Such a request
could be made by calling a method

and passing a set of controls, each
of which represents a filtering cri-
terion (such as a TDMSQLEdit, a
TDMSQLListBox, and so on). By putt-
ing a bunch of these controls (and
perhaps a DBGrid) on a form we can
have an effective SQL-based
filtering system. For example,
suppose we have a couple of
TDMSQLEdit components as defined
in Listing 1, and a TDMSQLQuery with
the following SQL statement:

select Code, Description
from Goods

By executing this line of code:

MDSQLQuery1.BuildSQL(
[SQLEdit1, SQLEdit2])

we automatically transform the
‘basic’ SQL statement in
MDSQLQuery1 into:

select Code, Description
from Goods
where Description like
“Metal%” and Status = “A”

To implement the system we will
need a set of routines to extract
parts of an SQL statement (select,
from, where, order by and so on).
Since the structure of SQL sen-
tences is usually quite simple, we
won’t need a real SQL parser
(which you can find on the internet
in freeware implementations, by
the way), that would go beyond
the purpose of this article. We will
put together a set of simple rou-
tines based on Pos and Compare-
Text. These routines are contained
in the SQLUtils unit. After that, we
need a way for the components to
‘know’ each other but without cou-
pling them too tightly. We have
two kinds of components here:
queries (we don’t want to limit our-
selves to TQuery descendants, but
would like to be able to define
TDMSQLIBQuery, TDMSQLADOQuery and
such with ease) and criteria. A cri-
terion can be an Edit component,
as in the previous example, but
also a ListBox, a RadioGroup, a
DateTimePicker, and so on.

Criteria have some common
characteristics and behaviour, but
it is clear that they cannot inherit

➤ Listing 1

object DMSQLEdit1: TDMSQLEdit
DataField = 'Description'
SQLOperator = opBeginningWith
Text = 'Metal'

end
object
DMSQLEdit2: TDMSQLEdit
DataField = 'Status'
SQLOperator = opEqualTo
Text = 'A'

end



10 The Delphi Magazine Issue 66

from a common base class. Since
Delphi does not have multiple
inheritance (for which many are
always grateful to Borland), I have
decided to use a special interface
to group my criteria. Thus we intro-
duce at this point an interface
called IDMSQLCriterion and state
that every criterion must imple-
ment it. For this reason, we should
keep the interface as light as possi-
ble, since we intend to be able to
define new criteria easily.

For now, we only need two meth-
ods. First, GetSQL returns the SQL
string corresponding to the crite-
rion (the DMSQLEdit1 component in
our example would return the
string Description like “Metal%”,
maybe with additional bounding
parentheses), while ClearSQL emp-
ties the criterion (in our case, the
implementation would just call
TEdit.Clear).

A query component must put
together all the SQL snippets from
the criteria using the logical opera-
tors and and or, depending on the
situation. We introduce the
IDMSQLQuery interface for this pur-
pose, since we cannot find a
common base class for all the pos-
sible query components we plan to
define.

Architecture
Implementing the basic capabili-
ties for these two interfaces
requires us to write a respectable
amount of code. So, I have decided
to encapsulate the real code into
two internal classes. The first is
TDMSQLCustomCriterion, which may
have some derived classes, to
which a criterion control delegates
the implementation of IDMSQLCri-
terion. The second is TDMSQL-
QueryImpl, which includes all the
capabilities each query object
must have. This kind of encapsula-
tion will prove useful when we
create new components: it will
suffice to instantiate an internal
helper object to have the
appropriate interface imple-
mented, thanks to the interface
implementation delegation which
was introduced in Delphi 4.

These internal objects, in turn,
need to get information from their
owners in order to work correctly.

For example, an object of class
TDMSQLCustomCriterion needs to
know the current value (or values,
in the case of a multi-select crite-
rion) of the owning control, in
order to be able to build the SQL
snippet. So we introduce another
interface, IDMSQLCriterionData,
that all criteria must implement
(this time directly, without any
delegation). This last interface fea-
tures a method called GetSQLValue
which returns a Variant; in the case
of a multi-select criterion, the
method will return an array of
Variants.

In a similar manner, a query
object implements the IDMSQLQuery
interface with the fundamental
method SetSQLText, which will help
a contained TDMSQLQueryImplobject
in substituting the SQL string in the
container with the one obtained
from the criteria. With this
architecture, we can concentrate
most of the code into two classes.
Since we have kept the interfaces
to a minimum, each new criterion
we want to define will just have to
implement two interfaces and a
total of three methods. Listing 2
shows an excerpt of the interface
definitions from the DMSQLBaseunit.

This kind of bidirectional com-
munication between owning and
owned objects is made feasible
thanks to the interfaces. It is a very
powerful technique which is rarely
used in real-world applications,
maybe simply because not all
Delphi programmers know how to
exploit the features of interfaces
and interface implementation
delegation.

The ‘abstract’ class TDMSQLCus-
tomCriterion, just like the main
interface it implements, has one
method that stands out from the
others: GetSQL. This method makes

use of several other private and
protected methods that query the
contained object through the
IDMSQLCriterionData interface and
build the final where clause portion.
Most of the work is done in the
abstract method BuildSQL, that
derived classes must implement.
For now, we have two derived
classes: TDMSQLSingleCriterion for
single-value criteria (such as an
Edit control) and TDMSQLMultiple-
Criterion for multi-select criteria
(such as a multi-select ListBox).

Once we sort out who is in
charge of what, and write most of
the code in the DMSQLBase and
DMSQLUtilsunits, we need to create
the actual criteria; all we need to
do is inherit a new class from TEdit
(or whatever TSuperDuperEdit
class we need to use), implement
the relevant interfaces and publish
some useful properties. In our
example, I chose to cut the corners
and publish the TDMSQLSingle-
Criterion object itself as a prop-
erty, so that its sub-properties are
directly seen and manipulated in
the Object Inspector, and
streamed from or to the .dfm file.
This is possible because we have
been smart and inherited
TDMSQLCustomCriterion from TPers-
istent. Table 1 shows a list of the
main properties of a criterion
internal object, together with a
brief explanation of the meaning of
each one.

A criterion could also surface,
one by one, the properties of its
contained object; this gives us a
little more flexibility at the price of
more lines of code. By the way, we
would also win a free property
editor for the DataField property,
since the unknown author in

// Every criterion component must implement this interface.
IDMSQLCriterion = interface
...
// Returns the complete SQL expression relative to the criterion.
function GetSQL: string;
// Clears the criterion.
procedure ClearSQL;

end;
// Used by a TDMSQLCriterion object to read information from the
// owning object.
IDMSQLCriterionData = interface
...
// Returns the value(s) of the criterion; Unassigned means no chosen
// criterion.
function GetSQLValue: Variant;

end;

➤ Listing 2



12 The Delphi Magazine Issue 66

Borland decided to make the
default editor available only if you
inherit from TComponent (while we
have a mere TPersistent at hand).
If and when internal TComponents
will become expandable in the
Object Inspector, we will have a
comprehensive solution in inherit-
ing our contained object from
TComponent. Anyway, Listing 3 has
the code for the Edit criterion.

As you can see, the interface and
implementation parts total a few
lines of code, most of which are
straightforward. The ‘real’ code is
in the base units. GetSQLValue just
returns the value of the Text prop-
erty, handling the special cases of
unassigned and empty criteria
through SQLStringToVariant, from
the DMSQLUtils unit (see Listing 4).

Null and Unassigned are treated
as special values when it comes to
building the SQL string. NullValue-
Str is defined as <null> and it is
what the user will have to type in
when he wants to search for NULL
values. Having said this, building
more criteria is not a complex task.
As an example, I have built a
ListBox criterion that supports
multiple selection (value = “this”
or value = “that”). The parts in

➤ Listing 3

type
// An Edit box criterion.
TDMSQLEdit = class(TEdit, IDMSQLCriterion,
IDMSQLCriterionData)

private
FCriterion: TDMSQLSingleCriterion;
function GetSQLValue: Variant;
procedure ClearSQL;

protected
procedure Notification(AComponent: TComponent;
Operation: TOperation); override;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property Criterion: TDMSQLSingleCriterion read
FCriterion write FCriterion implements IDMSQLCriterion;

end;
...
constructor TDMSQLEdit.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FCriterion := TDMSQLSingleCriterion.Create(Self);

end;
destructor TDMSQLEdit.Destroy;
begin
FCriterion.Free;
inherited;

end;
function TDMSQLEdit.GetSQLValue: Variant;
begin
Result := SQLStringToVariant(Text);

end;
procedure TDMSQLEdit.Notification(AComponent: TComponent;
Operation: TOperation);

begin
inherited;
FCriterion.CustomNotification(Acomponent, Operation);

end;
procedure TDMSQLEdit.ClearSQL;
begin
Clear;

end;

function SQLStringToVariant(
SQL: string): Variant;

begin
if SQL = NullValueStr then
Result := Null

else if SQL = '' then
Result := Unassigned

else
Result := SQL;

end;

function TDMSQLListBox.GetSQLValue: Variant;
var
VarIndex: Integer;
g: Integer;

begin
if not MultiSelect then begin
Result := VarArrayCreate([1, 1], varVariant);
// Single selection: return a single value.
if ItemIndex < 0 then
Result[1] := SQLStringToVariant('')

else
Result[1] := SQLStringToVariant(Items[ItemIndex]);

end else begin
// Multiple selection: return an array.
Result := VarArrayCreate([1, SelCount], varVariant);
VarIndex := 1;
for g := 0 to Pred(Items.Count) do
if Selected[g] then begin
Result[VarIndex] := SQLStringToVariant(Items[g]);
Inc(VarIndex);

end;
end;

end;
procedure TDMSQLListBox.ClearSQL;
var
g: Integer;

begin
if MultiSelect then begin
for g := 0 to Pred(Items.Count) do
if Selected[g] then
Selected[g] := False;

end else
ItemIndex := -1;

end;

➤ Listing 4

➤ Table 1

Property Name Description

DataSource Together with DataField, this property serves to link to a
field in the DataSet to filter. If persistent fields are defined,
and if the SQLOptions property does not include the
sqlOverrideFieldType flag, this link is followed to obtain
the data type, otherwise the value of the DataType property
is used. Automatic reading of the data type works only with
persistent fields because it has to be done while the query is
not open.

DataField The name of the field on which this criterion is applying the
filter; this is required.

DataType The data type must be specified when it is not possible to
determine it automatically (see also DataSource).

SQLOperator The SQL operator to use for applying the filter (equal to,
not equal, greater than, etc.); it is required.

SQLOptions The meaning of the sqlOverrideFieldType is explained
before; sqlAddBrackets ensures that the resulting string is
bound with round brackets (to avoid ambiguities in
concatenating the criteria).

➤ Listing 5



February 2001 The Delphi Magazine 13

which the code differs from that of
the Edit criterion are the GetSQL-
Value and ClearSQLmethods, which
you can find in Listing 5.

On to the query object. The first
implementation is a class derived
from TQuery, but we can use a
non-BDE query object as well (the
code on the disk has a TDMSQL-
IBQuery installed in a separate
package, so that we have the basic
package, the BDE package and the
IBX package for InterBase
Express). As you might remember,
a ‘searchable’ query is identified
by the IDMSQLQuery interface (see
Listing 6, from the DMSQLBase unit).

The most interesting part in the
declaration of the query object,
which implements this interface, is
shown in Listing 7.

The internal TDMSQLQueryImpl is
directly surfaced as a published
property, so that it can be seen and
manipulated from the outside in
general and the Object Inspector in
particular (just as we did with the
criteria). The TDMSQLQueryImpl fea-
tures everything that is needed to
make TDMSQLQuery, TDMSQLIBQuery
and such work; look at its public
interface in Listing 8.

BaseSQL is the SQL string to
which the criteria are added when
you call BuildSQL. This allows us to
have fixed criteria (by adding a
where clause to the base string). As
a consequence, we must remem-
ber to take care of the value of this
property in case we need to modify
the SQL string at runtime. The com-
ponent, in fact, will only assign it to
the value of the SQL property when
it is streamed from the .dfm file (in
the Loaded method, that is).

The BuildSQLmethod, in its three
incarnations, creates a new SQL
statement based on the input crite-
ria. We can tell the method which
criteria we intend to use in three
ways (directly, by owner or by call-
back), for maximum flexibility.
Three overloaded versions of the
ClearCriteria method exist as well
(they all make use of the ClearSQL
method of the IDMSQLCriterion
interface).

Finally, SQLConnector indicates
the logical operator to be used to
connect the criteria (or, and), while
the SQLOptions are for customising

the creation of the SQL statement.
The only available option, for now,
is sqlOpenAfterBuild, which means
the query will be automatically
opened after a call to BuildSQL.

Putting It All To Work
To show how these components
work, I have developed an example
called SQLDemo (SQLDemo_IB is
the IBX version). The program con-
sists of a search form to filter data
contained in the EMPLOYEE table of
the IBLOCAL sample InterBase data-
base. The main idea behind this
example is that, since we have
encapsulated the most commonly
needed features in the compo-
nents, it is possible to create a
simple search form with a bunch of
components and almost no code.
Figure 1 shows the search form at
runtime: it has a series of filter
criteria in the upper left part of the
form, a DBGrid towards the bottom
showing the filtered data, and a
Memo (which is there only for

demonstration purpose) showing
the generated SQL statement. You
can generate a new statement with
the Refresh button, and empty the
search criteria with the Clear
button. A TDMSQLQuery, a TData-
Source and a TDatabase complete
the picture.

Each criterion is linked to the
DataSource, and features the prop-
erties we described earlier. See
Listing 9 for an example.

The code for the Refresh button
is straightforward, and is shown in
Listing 10.

First we ask QyResult to rebuild
its SQL instruction from the crite-
ria on the form, then we show the
resulting string in the Memo (the
try..finally block is there to
show the SQL string even in the
case of errors, mainly for debug-
ging purposes). We have set the
sqlOpenAfterBuild option so we
don’t need to manually open the

// Identifies a query object in our framework.
IDMSQLQuery = interface
...
// These two methods are called by the TDMSQLQueryImpl object before and
// after each call to BuildSQL.
procedure BeforeBuild(Sender: TDMSQLQueryImpl);
procedure AfterBuild(Sender: TDMSQLQueryImpl);
// This method is called by the TDMSQLQueryImpl after a BuildSQL (and before
// AfterBuild) to set the newly built SQL statement. Usually, a query object
// will assign the value to its SQL property.
procedure SetSQLText(Value: string);

end;

// A TQuery that can change its where clause.
TDMSQLQuery = class(TQuery, IDMSQLQuery)
private
FImplementor: TDMSQLQueryImpl;
procedure AfterBuild(Sender: TDMSQLQueryImpl);
procedure BeforeBuild(Sender: TDMSQLQueryImpl);
procedure SetSQLText(Value: string);
...

published
property Implementor: TDMSQLQueryImpl read FImplementor write FImplementor;

end;

➤ Above: Listing 6 ➤ Below: Listing 7

TDMSQLQueryImpl = class(TPersistent)
public
// The base SQL statement; this property must be assigned a value at least
// once by the query object (f. ex. in the Loaded method).
property BaseSQL: TStrings read FBaseSQL write SetBaseSQL;
// Methods to build the SQL string from:
// - an array of criteria.
procedure BuildSQL(Criteria: array of IDMSQLCriterion); overload;
// - all the criteria owned by AOwner.
procedure BuildSQL(AOwner: TComponent); overload;
// - all the criteria passed by the callback function.
procedure BuildSQL(EnumProc: TDMSQLCriteriaEnumProc); overload;
// Methods to clear the criteria.
procedure ClearCriteria(Criteria: array of IDMSQLCriterion); overload;
procedure ClearCriteria(AOwner: TComponent); overload;
procedure ClearCriteria(EnumProc: TDMSQLCriteriaEnumProc); overload;

published
property SQLOptions: TSQLOptions read GetSQLOptions write FSQLOptions
default SQLOptionsDefault;

property SQLConnector: TSQLConnector read FSQLConnector
write SetSQLConnector default SQLConnectorDefault;

end;

➤ Listing 8



14 The Delphi Magazine Issue 66

query. The Clear button just calls
the query’s ClearCriteria method.
Except for a line of code to open
the Database component, we don’t
need anything else to implement
our fully functional and efficient
search form against a database
table.

The IBX demo program is almost
the same: it needs an additional
component (a TIBTransaction) plus
IBX versions of the data access
components, but the code itself is
identical. The same applies for the
code of the TDMSQLQuery and
TDMSQLIBQuery components, with
almost no differences. This kind of
architecture allows us a certain
level of abstraction from the
middleware, and I bet that it will
take only a few minutes to inherit a
search query from a dbExpress
query (whatever they will call it)
once it (together with Kylix or
Delphi 6) is out.

Possible Extensions
To extend the framework, the first
thing that comes to mind is the
introduction of new criteria. I have
included only ListBox and Edit cri-
teria, but it would be easy to create
some additional ones: TDMSQLDate-
TimePicker, to handle date and time
fields, TDMSQLCheckBox, for Boolean
fields (which must also be added to
the set of supported field types),
TDMSQLComboBox (similar to TMDSQL-
ListBox), TDMSQLLookupListBox (a
TDMSQLListBox bound to a DataSet),
TDMSQLLookupComboBox (a TDMSQL-
ComboBox bound to a DataSet),
TDMSQLRadioGroup (similar to
TDMSQLListBox), TDMSQLLookup-
RadioGroup (a TDMSQLRadioGroup
bound to a DataSet). I’ll leave the
rest to your imagination!

If you use third-party compo-
nents to build your user interfaces,
then you could build new criteria
based on such components.

Anyway, it is possible to extend
the framework itself, perhaps get-
ting rid of some of the limitations I
have introduced for simplicity.
Parameterised queries are not sup-
ported; you can’t filter group by
queries on the having clause; you
can use senseless operators, such
as opBeginningWith with a date
field.

With regard to adding function-
ality, we are only limited by our
own fantasies. We can have a
ComboBox linked to a criterion, used
to set its SQLOperator property. We
could have a RadioGroup or ListBox
with the same function, a ComboBox
or ListBox to set the value of the
DataField property. We can even
have a system to write a set of
criteria to a stream or a file and
read it back; this could be useful to
save and reload user queries, or to

generate report headers, it could
also be a first step for the creation
of a two-way system.

Conclusion
The main concept behind this
article is that it is not always neces-
sary to give up a nice GUI or easy
RAD techniques to gain efficiency.
This said, there are no limits to the
extent of encapsulation of the SQL
language into reusable classes and
visual components. As we have
seen, Delphi comes to help us with
the VCL, interfaces and a rich data
access layer. The weak part of the
equation, that is the visual con-
trols for searching and filtering
that are inefficient in a client/
server environment, can be substi-
tuted with a custom solution as we
have done in our example. By
paying enough attention to the
architectural aspects of the frame-
work, we can leverage some lan-
guage features like interfaces and
interface implementation delega-
tion to make it easy to use and to
expand.

Nando Dessena works as a Delphi
developer, trainer, consultant
and technical author in Italy (not
necessarily in this order). You
can reach him by email at
nandod@dedonline.com

object EtFullName: TDMSQLEdit
...
Criterion.DataSource = DsResult
Criterion.DataField = 'FULL_NAME'
Criterion.SQLOperator = opContaining

end

procedure TFmMain.PbBuildSQLClick(Sender: TObject);
begin
try
QyResult.Implementor.BuildSQL(Self);

finally
EtSQL.Lines := QyResult.SQL;

end;
end;

➤ Above: Listing 9 ➤ Below: Listing 10

➤ Figure 1


	Balancing The Workload
	Filtering Components
	Architecture
	Putting It All To Work
	Possible Extensions
	Conclusion

